terça-feira, 3 de fevereiro de 2009

Capa

Equipe: Antonio Alan n° 05 3°j
Antonio Victor n° 06 3°j
Dayse Anne n° 09 3°j
Felipe Alves n° 11 3°j
Isadora Costa n° 14 3°j
Marcondes Nascimento n° 26 3°j

segunda-feira, 2 de fevereiro de 2009

fisica

Energia mecânica é a energia que pode ser transferida por meio de força. A energia mecânica total de um sistema é a soma da energia potencial com a energia cinética. Se o sistema for conservativo, ou seja, apenas forças conservativas atuam nele, a energia mecânica total conserva-se e é uma constante de movimento. A energia mecânica "E" que um corpo possui é a soma da sua energia cinética "c" mais energia potencial "p".


Uma força é classificada como sendo conservativa quando um trabalho realizado por ela para movê-lo de um lugar a outro independentemente do percurso, isto é, do caminho escolhido. Esclarecendo: para carregar um saco de batatas e transportá-lo morro acima, o caminho escolhido pode ser mais longo, caminhando circularmente ou um caminho mais curto e reto, mas através de uma ladeira íngreme. A força gravitacional é um tipo de força conservativa. Um exemplo de força não consevativa é a força de atrito que também é chamada força dissipativa.

Há uma lei fundamental da Física que é a da conservação da energia mecânica de um corpo: E = K + U = constante, se um corpo está sob a ação somente de forças conservativas. Isso equivale a dizer que se a energia cinética de um corpo aumenta, a energia potencial deve diminuir e vice-versa de modo a manter E constante.

Fórmulas:

Energia Mecânica = Ec+ Ep

Para:

Energia Cinética = \frac{1}{2}mv2

Energia Potencial Gravitacional(Epg) = mgh

Energia Potencial Elástica(Epe) = \frac{1}{2}kx2


Atenção: podem ocorrer as duas energias potenciais, então a fórmula será:

Energia Mecânica = Ec+ Epe+ Epg

Legenda

  • K=energia cinética
  • U=energia potencial gravitacional
  • m=massa (kg)
  • g=aceleração da gravidade (m/s²)
  • h=altura(m)
  • v=velocidade(m/s)

quinta-feira, 22 de janeiro de 2009

Química

TABELA PERIÓDICA
A tabela periódica dos elementos químicos é a disposição sistemática dos elementos na forma de uma tabela ,em função de suas propriedades .São muito úteis para preverem as característica e tendências do átomos, permite por exemplo prever os elementos dos átomos e das moléculas delas formados ou entender por que certos átomos são extremamente reativos enquanto outros são praticamente inertes.Permite prever propriedades como eletronegatividade raio iônico energia de ionização.Da enfim fazer inferências químicas plausiveis.
Estrutura da Tabela Periódica
A tabela periódica relaciona os elementos em linhas chamadas periódos e colunas chamadas grupos ou famílias,em ordem crescente de seus números atômicos.

QUIMÍCA

A história da química está intrisecamente ligada ao desenvolvimento do homem, já que abarca todas as transformações da química de matérias e as teorias correspondentes. Com frequência a história da química se relaciona intimamente com a história dos químicos e segundo a nacionalidade ou tendência política do autor ressalta em maior ou menor medidas ou sussecos alcançados num determinado campo ou por uma determinada ação. A ciência química surge no século a VXII partir dos estudos de alquimia populares entrem muitos dos cientistas da época. Considera-se que os princípios básicos da química se recolhem pela primeira vez na obra do cientista britânico Robert Boyle: The Sceptical Chymist (1661). A química, como tal, começa a ser explorada um século mais tarde com os trabalhos do francês Antoine Lavoisier e as suas descobertas em relação ao oxigênio com Carl Wilhelm Scheele, à lei da conservação da massa e à refutação da teoria do flogisto como teoria da combustão.O princípio do domínio da química (que para alguns antropólogos coincide com o princípio do homem moderno) é o domínio do fogo. Há indícios de que faz mais de 500.000 anos, em tempos do Homo erectus, algumas tribos conseguiram este sucesso que ainda hoje é uma das tecnologias mais importantes. Não só dava luz e calor na noite, como ajudava a proteger-se contra os animais selvagens. Também permitia a preparação de comida cozida. Esta continha menos microorganismos patogênicos e era mais facilmente digerida. Assim, baixava-se a mortalidade e melhoravam as condições gerais de vida.
O fogo também permitia conservar melhor a comida e especialmente a
carne e os peixes secando-os e defumando-os.
Desde este momento teve uma relação intensa entre as cozinhas e os primeiros
laboratórios químicos até o ponto que a pólvora negra foi descoberta por uns cozinheiros chineses.
Finalmente, foram imprescindíveis para o futuro desenvolvimento da
metalurgia materiais como a cerâmica e o vidro, além da maioria dos processos químicos.Esta era uma era na qual as culturas Sumérias, Babilônica, Egípcias e Gregas estavam florescendo. Durante a maior parte deste período, o misticismo e a superstição prevalesceram sobre o pensamento científico. Nessa era, muitas pessoas acreditavam que os processos naturais eram controlados por espíritos, e que eles poderiam se utilizar de magia para persuadi-los a agir em seu favor. Muito pouco conhecimento químico foi conseguido, mas alguns elementos tais como o Ferro, Ouro e Cobre foram reconhecidos. Durante este tempo, os filósofos gregos Tales e Aristóteles especularam sobre a composição da matéria. Eles acreditavam que a Terra, Ar, Fogo e Água (alguns acreditavam em uma quinta substância conhecida como "quintessência", ou "éter") eram os elementos básicos que compunham toda a matéria. Pelo fim desta era, as pessoas aprenderam que o Ferro poderia ser conseguido a partir de uma rocha marrom escura, e o bronze poderia ser obtido combinando-se cobre e latão. Isso os levou a imaginar que se uma substância amarela pudesse ser combinada com uma mais dura, Ouro poderia resultar. A crença que o ouro poderia ser obtido a partir de outras substâncias iniciou uma nova era conhecida como Alquimia.

Alquimia - Do início da Era Cristã à metade do século XVII
Durante esta longa era, muitos alquimistas acreditaram que metais poderiam ser convertidos em ouro com a ajuda de uma "coisa" chamada "a pedra filosofal". Esta "Pedra filosofal" nucna foi encontrada, até onde se sabe, mas muitas descobertas de novos elementos e compostos foram feitas durante este período. No inísio co sédulo XIII, alquimistas como Roger Bacon, Albertus Magnus e Raymond Lully começaram a imaginar que a procura pela pedra filosofal era fútil. Eles acreditaram que os alquimistas poderiam servir o mundo de uma melhor maneira descobrindo novos produtos e métodos para melhorar a vida cotidiana. Isso iniciou uma corrente na qual os alquimistas pararam de buscar pela pedra filosofal. Um importante líder neste movimento foi Theophrastus Bombastus. Bombastus sentiu que o objetivo da alquimia deveria ser a cura dos doentes.
Ele acreditava que sal, enxofre e mercúrio poderiam dar saúde se combinados nas proporções certas. Este foi o primeiro período da Iatroquímica. O último químico influente nesta era foi Robert Boyle. Em seu livro: "O Químico Cético", Boyle rejeitou as teorias científicas vigentes e iniciou uma listagem de elementos que ainda hoje é reconhecida. Ele também formulou uma Lei relacionando o volume e pressão gos gases (A Lei de Boyle). Em 1661, ele fundou uma sociedade cient;ifica que mais tarde tornaria-se conhecida como a Sociedade Real da Inglaterra (Royal Society of England).

Química Tradicional - Da metade do século XVII ao meio do século XIX
A esta altura, os cientistas estavam usando "métodos modernos" de descobertas testando teorias com experimentos. Uma das grandes controvérsias durante este período foi o mistério da combustão. Dois químicos: Johann Joachim Becher e Georg Ernst Stahl propuseram a teoria do flogisto. Esta teoria dizia que uma "essência" (como dureza ou a cor amarela) deveria escapar durante o processo da combustão. Ninguém conseguiu provar a teoria do flogisto. O primeiro químico que provou que o óxigênio é essencial à combustão foi Joseph Priestly. Ambos o oxigênio e o hidrogênio foram descobertos durante este período. Foi o químico francês Antoine Laurent Lavoisier quem formulou a teoria atualmente aceita sobre a combustão. Esta era marcou um período aonde os cientistas usaram o "método moderno" de testar teorias com experimentos. Isso originou uma nova era, conhecida como Química Moderna, à qual muitos se referem como Química atômica.

Química Moderna - Da metade do século XIX até hoje
Esta foi a era na qual a Química floresceu. As teses de Lavoisier deram aos químicos a primeira compreensão sólida sobre a natureza das reações químicas. O trabalho de Lavoisier levou um professor inglês chamado John Dalton a formular a teoria atônica. Pela mesma época, um químico italiano chamado Amedeo Avogadro formulou sua própria teoria (A Lei de Avogadro), concernente a moléculas e suas relações com temperatura e pressão. Pela metade do século XIX, haviam aproximadamente 60 elementos conhecidos. John A. R. Newlands, Stanislao Cannizzaro e A. E. B. de Chancourtois notaram pela primeira vez que todos estes elementos eram similares em estrutura. Seu trabalho levou Dmitri Mendeleev a publicar sua primeira tabela periódica. O trabalho de Mandeleev estabeleceu a fundação da química teórica. Em 1896, Henri Becquerel e os Curies descobriram o fenômeno chamado de radioatividade, o que estabeleceu as fundações para a química nuclear. Em 1919, Ernest Rutherford descobriu que os elementos podem ser transmutados. O trabalho de Rutherford estipulou as bases para a interpretação da estrutura atômica. Pouco depois, outro químico, Niels Bohr, finalizou a teoria atômica. Estes e outroa avanços criaram muitos ramos distintos na química, que incluem, mas não somente: bioquímica, química.















quarta-feira, 21 de janeiro de 2009

Biologia

Filos do reino Animalia


ARTRÓPODES
Dentro do estudo dos invertebrados, o filo artrópodes merece atenção especial. Ele agrupa mais de 800 mil espécies, quantia que supera todos os demais filos reunidos. Além disso, merecem citação a grande diversidade dessas espécies; Sua boa adaptação a diferentes ambientes; as vantagens em copetição com outras espécies; a excepcional capacidade reprodutória; a eficiência na execução de suas funções; a resistência a substâncias tóxicas e a sua perfeita reorganização social, caso das abelhas, formigas e cupins.
Os artrópodes são invertebrados que possuem patas articuladas, nome formado de Athros, que significa articulações, o podes, que significa pés patas. Os artrópodes tem uma carapaça protetora externa, que é o seu esqueleto, formada por uma substância resitente e impermeável, chamada quitina, endurecida por conter muito carbonato de cálcio.
Ao crescer, o artrópode abandonam o esqueleto velho, pequeno, e fabrica outro, maior. Esse fenômeno é chamado muda. Ela ocorre várias vezes para que o animal possa atingir o tamanho adulto.
Os artrópodes, no entanto, não possuem apenas patas articuladas, mas sim todas as suas e extremidades, como as antenas e as peças bucais. Os seus membros inferiores são formados por partes que se articulam, ou seja, que se movimentam umas em relação às outras: os seus pés se articulam com suas pernas, que se articulam também comm suas coxas, que também se articulam com os ossos do quadril.

CLASSIFICAÇÃO DOS ARTRÓPODES:
Os artrópodes podem ser classificados em cinco classes principais, usando como critério o número de patas.
No de patas Classe Exemplos 6 Insetos Barata, mosquito 8 Aracnídeos Aranha, escorpião 10 Crustáceos Camarão, siri 1 par por segmento Quilópodes Lacraia 2 par por segmento Diplópodes Piolho de cobra


INSETOS
São artrópodes com seis patas distribuída em três partes. Os insetos apresenta o corpo subdividido cabeça, tórax e abdome. Possuem um par de antenas e três pares de patas no tórax. Nas maioria das espécies, há dois pares de asas, mas há espécies com apenas um par e outros sem asas.
O corpo dos insetos e formado por três regiões: cabeça, tórax e abdome. Na cabeça das insetos, podemos notar antenas, olhos e peças bucais.
As antenas são utilizadas para a orientação. Todos insetos tem um par de antenas. Os olhos os insetos possuem dois tipos de olhos:
- 2 olhos compostos, isto é, formados por várias unidades, que permite enxergar em várias direções ao mesmo tempo;
- 3 olhos simples, também conhecidos por ocelos.
Esse conjunto de olhos proporciona aos insetos uma excelente visão. Eles podem enxergar coisas que não são visíveis ao homem.
As peças bucais, todas dotadas de articulação, estão diretamente relacionadas com a alimentação. Assim, as peças bucais podem ser de vários tipos, conforme os hábitos alimentares dos insetos.
O tórax dos insetos é dividido em três partes; em cada uma delas prende-se um par de patas. É ainda no tórax que se prendem as asas, existentes na maioria dos insetos. Quando ao número de asas , existem 3 tipos de insetos: sem asas, com um par de asas e com dois pares de asas.
A Respiração dos insetos se dá através de traquéias, pequenos canais que ligam as células do interior do corpo com o meio ambiente. Ao longo de todo o corpo de um inseto podem ser ver os estimas , pequenas manhas onde se abrem as traquéias.
Os insetos são animais de sexos separados e ovíparos. Depois que os ovos são botados pelas fêmeas, eles se desenvolvem e forma um novo inseto. Alguns insetos tem desenvolvimento direto: do ovo nasce uma forma jovem, que já tem o aspecto do adulto, embora menor. É, por exemplo, o caso da traça. O desenvolvimento da mosca é indireto: ela nasce diferente do adulto, e passa por mudanças na forma do corpo, enquanto se transforma de recém- nascida em adulta. Dizemos que a mosca sofre metamorfose. Todas as formas que tem aspecto diferente do adulto chama-se larvas. Nem todos os insetos apresentam metamorfose, mas ela ocorre na maioria deles. Você já deve ter visto as lagartas das borboletas: elas são larvas que se transformarão em borboletas adultas.
A borboleta bota o ovo em uma folha, e desse ovo nasce uma lagarta, que é a primeira forma de larva desses insetos. Em seguida, a lagarta se transforma, passando por outras formas de larva, até originar a borboleta adulta.
Existem aproximadamente 800 mil espécies de insetos, distribuídas por mais de 30 ordens. Um dos critérios usados para a classificação dos insetos é o número e a forma das asas.
Ordem Características Exemplos Himenópteros asas parecidas com membranas- aqui se incluem insetos sem asas Formiga e Abelha Dípteros duas asas Mosca e Mosquito Coleópteros asas formando estojo Besouro Ortópteros asas retas, formando angulo reto com o corpo Barata e Gafanhoto Lepidópteros asas com escamas Borboleta e Mariposa
O equilíbrio ecológico, em todo ecossistema, é mantido graças a uma série de relações, algumas positivas e outras negativas. Uma relação altamente positiva é a que ocorre entre os insetos voadores e as flores. Para que as plantas se reproduzam há necessidade de que o grão de pólen de uma flor seja transportada até outra flor. Esse transporte chama-se polinização, e é realizado pelos insetos voadores e por vários outros agentes. O transporte do pólen, é realizado em grande parte pelos insetos, é de extrema importância na preservação de matas, florestas, jardins, pomares. É, enfim, essencial à preservação de numerosos ecossistemas. Um exemplo de relação negativa é o que ocorre entre o gafanhoto e as plantações. O gafanhoto é um predador voraz e vive em enormes bandos, capazes de destruir rapidamente plantações inteiras. Um outro inseto menos voraz é o bicho-da-seda, uma mariposa cujas larvas alimentam-se de folhas, principalmente de amoreiras.
Embora alimentam-se dessas folhas, as larvas do bicho-da-seda são muito úteis, pois produzem a seda, tão importante na industrialização de tecidos.
Os insetos trazem poucos benefícios diretos à saúde humana. A abelha, no entanto, é um exemplo de benefício direto, pois produz o mel, que usamos como alimento e possui ótimo valor nutritivo. A maior parte das relações diretas entre os insetos e o homem é nociva. Assim, por exemplo, muitas abelhas, que são tão úteis, são também venenosas, e seus venenos podem provocar forte dor e grande reação local. As picadas de abelha, no entanto, geralmente não causão grandes males.
O maior mal que os insetos causam a saúde humana é a transmissão de outros seres vivos, que causam doenças. É o caso, por exemplo, da mosca- doméstica, que pousa no lixo e em outros lugares contaminados e depois pousa nos nossos alimentos, trazendo sujeira e micróbios. Assim, ela pode causar diversas doenças, como a disenteria.
Outros exemplos de doenças transmitidas por insetos são a elefantíase, a malária, a febre amarela, a doença de chagas e o dengue.

ARACNÍDEOS
Os aracnídeos são representados pelas aranhas, pelos escorpiões e pelos carrapatos. Todos eles possuem um par de quelíceras e quatro pares de patas locomotoras.
As quelíceras são apêndices em forma de pinças, situados na parte anterior da cabeça. É um exemplo uma aranha jovem e uma adulta. Seus corpos têm a mesma forma.Todos os aracnídeos não sofrem metamorfose.
Outra característica importante dos aracnídeos é que eles têm a cabeça e o tórax numa peça só, chamada cefalotórax.
É fácil distinguir um aracnídeo de um inseto, pelo exame externo do corpo.
Os Aracnídeos podem ser distribuídas por 3 ordens, com base no aspecto externo do corpo:
Ordem Corpo Exemplos Araneídeos cefalotórax e abdômen aranhas Escorpinídeos cefalotórax, abdome e pós-abdômen escorpiões Acarinos cefalotórax fundido com abdômen carrapato *Araneídeos englobam todas as espécies de aranhas, venenosas ou não.
*Escorpionideos, que reúne os escorpiões. O escorpião é um aracnídeo que provoca um certo receio nas pessoas, pelo seu aspecto e comportamento agressivo.
*Ácaros, que são os carrapatos e alguns parasitas micróbicos.
Crustáceos
Crustáceos são os artrópodes que possuem uma crosta protegendo o corpo. Os principais representantes dessa classe são os camarões, as lagostas, os caranguejos e os siris, todos com 5 pares de patas. São, portanto, decápodes( deca= dez; podes= patas, pés).
Na maioria dos decápodes, as 2 patas dianteiras são modificadas e bem desenvolvidas como adaptação à preenção de alimentos.
O número de patas é um bom critério, que permite dividir a classe dos crustáceos em duas ordens: Decápodes e Isópodes. Os decápodes você já conhece: São crustáceos de dez patas.
Os isópodes são crustáceos que possuem numerosas patas, todas semelhantes. O exemplo mais conhecido é um isópodes encontrado em toda a costa litorânia do Brasil, conhecido por tatuí, tatuíra ou tatuzinho de praia.
O esqueleto é um sistema encarregado da sustentação do corpo, tanto em vertebrados como em invertebrados; nos vertebrados, o esqueleto fica dentro do corpo, e nos invertebrados fica fora, revestindo o corpo. Dizemos, então, que os vertebrados tem endoesqueleto (esqueleto interno) e que os invertebrados tem exoesqueleto (esqueleto externo).
Dentre os artrópodes, os crustáceos são os que possuem exoesqueleto mais volumoso e mais desenvolvido; Ele forma a crosta, que deu nome aos crustáceos, e que reveste e protege o corpo desses animais. Essa crosta é constituída por quitina e carbonato de cálcio.
Externamente, podemos reconhecer duas partes no corpo dos crustáceos: o cefalotórax e abdomen.
No cefalotórax localizam-se dois pares de antenas e um par de olhos compostos, que geralmente situan-se na extremidade de dois pedúnculos; são por isso, chamados olhos pedunculados. Esses olhos são movimentados pelos pedúnculos, permitindo assim, uma ampla exploração do ambiente.
Os crustáceos são, na sua maioria animais aquáticos, e de respiração branquial.
Caranguejo ou siri?
Muita gente confunde caranguejo com siri. Eles podem, no entanto, ser diferenciado facilmente por várias características. Duas delas muito evidentes:
- O corpo do siri é mais achatado do que o corpo do caranguejo, que é mais "arredondado"'.
-As patas traseiras do siri são largas, como remos, ao passo que as patas do caranguejo são pontudas.
Essas duas características devem-se ao fato de que os siris estaõ mais bem adaptados ao nado, do que os caranguejos.
Os crustáceos são inofensivos ao homem. Além disso, são largamente utilizados na alimentação humana. Na verdade, praticamente todos os artrópodes utilizados como alimento são crustáceos: camarão, lagosta, siri, caranguejo, tatuíra etc...
Quilópodes e Diplópodes
Tem como principal característica a divisão de corpo em vários segmentos, onde se prendem as patas.
Os quilópodes e os diplópodes possuem um par de antenas e olhos simples, não possuindo olhos compostos.
Quilópodes: Principal exemplo: centopéia (lacraia, escolopendra).
Principais características:
- 1 par de patas em cada segmento
- corpo dividido em 2 regiões, cabeça e tronco.
Diplópodes: Principal exemplo: piolho-de-cobra (embuá).
Principais características:
- 2 pares de patas em cada segmento;
- corpo dividido em três regiões: cabeça, tórax e abdômen.
Os Quilópodes e os Diplópodes não têm interesse especial para saúde humana. A única agressão ao homem é praticada pelas centopéias, que possuem um par de pinças de veneno na cabeça, que podem provocar picadas dolorosas.

EQUINODERMOS

São animais exclusivamente marinhos, como a estrela-do-mar, o ouriço-do-mar e o pepino-do-mar. São cerca de 5500 espécies, de tamanhos médios, nunca sendo muito grandes ou pequenos.
São características exclusivas dos equinodermos:
Sistema hidrovascular, constituído por vasos em cujo interior, circula água;
Formações existentes na superfície do corpo dotadas de mandíbulas e acionados por músculos;
Endoesqueleto calcário: o esqueleto interno, recoberto pela epiderme de origem mesodérmica e constituído por placas calcárias que, em algumas espécies, emitem espinhos;
Resumindo as características do grupo, podemos dizer que os equinodermos são animais triblásticos, celomados, deuterostômios e de simetria radial de base pentarradiada quando adustos. As larvas apresentam simetria bilateral.
O corpo da estrela-do-mar apresenta-se formado por um disco central do qual partem, radialmente, cinco braços triangulares. Em algumas estrelas, o número de braços pode chegar a vinte ou mais.
Os secos são separados. Em cada braço há um par de gônados. Cada uma destas possui um pequeno canal que se abre num poro situado na parte superior do disco central. A estrela-do-mar possui um grande poder de regeneração.
O ouriço-do-mar, chamado de pindá pelos indígenas, vive em buracos de rochas onde chega a água domar. Seu corpo tem a forma de um globo achatado e é coberto por espinhos e, entre eles, pedicelárias.
Os pepinos-do-mar são animais de corpo alongado e mole. Suas placas calcárias são pequenas e não se soldam como ocorre no ouriço-do-mar.
Os equinodermos ofiuróides assemelham-se às estrelas-do-mar, mas seus braços são muito finos. Esses braços são articulados e capazes de movimentar água.
O lírio-do-mar possui um pedúnculo pelo qual se fixa ao solo marinho ou a recifes de corais. Na extremidade do pedúnculo existe um disco em forma de cálice do qual partem cinco braços ramificados. Alguns desses braços são capazes de se soltar e flutuar.


Proteinas


A digestão de proteína começa no estômago, onde as proteínas se decompõem em proteoses, peptonas e polipeptídeos grandes, e continua no intestino delgado pela ação das enzimas proteolíticas provenientes do pâncreas e da mucosa intestinal. No estômago, o pepsinogênio inativo é convertido na enzima pepsina quando ele entra em contato com o ácido hidroclorídrico e outras moléculas de pepsina por estímulo da presença do alimento. Esta enzima começa a quebra ou clivagem das proteínas dos alimentos, principalmente o colágeno, a principal proteína do tecido conjuntivo.
As proenzimas pancreáticas são ativadas pela enteroquinase do suco intestinal que transforma o tripsinogênio em tripsina por meio de uma hidrólise. Esse processo é continuado por uma ativação em cascata das outras proenzimas pancreáticas através da ação da tripsina. A tripsina, quimiotripsina e carboxipolipeptidase pancreáticas decompõem a proteína intacta e continuam a decomposição iniciada no estômago até que se formem pequenos polipeptídeos e aminoácidos.
As peptidases proteolíticas localizadas na borda em escova também atuam sobre os polipetídeos, transformando-os em aminoácidos, dipeptídeos e tripeptídeos.
A fase final da digestão de proteínas ocorre na borda em escova, onde os dipeptídeos e tripeptídeos são hidrolisados em seus aminoácidos constituintes pelas hidrolases peptídicas. Os peptídeos e aminoácidos absorvidos são transportados ao fígado através da veia porta. Quase toda a proteína é absorvida no momento em que atinge o final do jejuno e apenas 1% da proteína ingerida é encontrado nas fezes.



Carboidratos


Digestão
Quando ingeridos, os carboidratos estão sob forma de polissacarídeos e dissacarídeos que necessitam ser hidrolisados (quebrados) em açucares simples para serem absorvidos. A digestão dos carboidratos, assim como de outros nutrientes, inicia-se na boca com a mastigação, que fraciona o alimento e o mistura com a saliva.
Durante esse processo, a enzima amilase salivar secretada pelas glândulas parótidas (glândula salivar situada na região orofaríngea) inicia a quebra do carboidrato em dextrinas e maltoses que são moléculas menores. Esta enzima sofre inativação no estômago, assim que inicia a liberação de outras enzimas locais. Ainda no estômago, ocorrem contrações das fibras musculares da parede continuando o processo digestivo mecânico, que são os movimentos peristálticos, que tem a função de misturar as partículas dos alimentos com secreções gástricas. É importante ressaltar que a secreção gástrica não contém enzimas digestivas específicas para a quebra do carboidrato, ocorrendo, portanto, a movimentação do carboidrato para a parte inferior do estômago e da válvula pilórica. Após esse processo, a massa alimentar transforma-se em uma massa espessa chamada quimo, que irá ocupar o duodeno, a primeira porção do intestino delgado.
Dentro do intestino delgado os movimentos peristálticos continuam movendo o quimo ao longo do intestino delgado onde a digestão do carboidrato é finalizada através das secreções pancreática e intestinal.
As enzimas do pâncreas entram no duodeno através de um ducto e contém a amilase pancreática, responsável pela continuidade do processo do desdobramento do amido e da maltose. Já as secreções intestinais contêm três enzimas distintas, as dissacaridases sacarase, lactase e maltase, que atuam sobre os dissacarídeos para render os monossacarídeos glicose, frutose e galactose para absorção.

Lipídeos


O evento inicial da digestão de lipídeos da alimentação começa na boca. Embora, nenhuma hidrólise de triglicérides ocorra na boca, os lipídeos estimulam a secreção da lípase das glândulas serosas na base da língua e posteriormente quantidades de gorduras são digeridas no estômago pela lipase gástrica, hidrolisando parte dos triglicerídeos em ácidos graxos e glicerol. Entretanto, a porção principal da digestão de gordura ocorre no intestino delgado, como resultado da lipase pancreática. A presença de gordura e proteína no intestino delgado também estimula a secreção de CCK. Esta, por sua vez, estimula a secreção biliar e pancreática. Äcidos graxos livres e monoglicerídeos produzidos pela digestão formam complexos chamados micelas, que facilitam a passagem dos lipídeos através do ambiente aquoso do lúmem intestinal para borda em escova. Os sais biliares são então liberados de seus componentes lipídicos e devolvidos ao lúmem do intestino. Na célula da mucosa, os AG e monoglicerídeos são reagrupados em novos triglicerídeos, estes juntamente com o colesterol e fosfolipídeos são circundados em forma de quilomícrons (QM).
Os QM são transportados e esvaziados na corrente sanguínea, e então levados para o fígado, onde os triglicerídeos são reagrupados em lipoproteínas e transportados especialmente para o tecido adiposo, para o metabolismo e para o armazenamento. O Colesterol é absorvido de modo similar, após ser hidrolisado da forma de éster pela esterase colesterol pancreática. As vitaminas lipossolúveis A, D, E e K também são absorvidas de maneira micelar, embora algumas formas hidrossolúveis de vitaminas A, E e K e caroteno possam ser absorvidas na ausência de sais minerais.

História

História do Bairro Benfica

O Benfica é um bairro muito peculiar de Fortaleza. Sua principal marca é a presença do Campus do Benfica (Humanas) da UFC. Fora ele, a UFC tem mais dois campi: O do Pici (exatas) e o do Porangabussu (Saúde).
O campus fica encravado no bairro. Para se locomover por entre as unidades é preciso atravessar ruas e Avenidas. O bairro também abriga o CEFET, algumas escolas e sedes de partidos, o que dá um clima bem acadêmico e politizado à região.
Quase não há verticalização por aqui e creio que vai ser assim por muito tempo. Os terrenos, em sua maioria, ou são pequenos demais (casas) ou enormes (universidade).

A Universidade Federal do Ceará é uma autarquia vinculada ao Ministério da Educação. Nasceu como resultado de um amplo movimento de opinião pública. Foi criada pela Lei 2.373, de dezembro de 1954 e instalada numa sessão no dia 25 de junho de 1955. Originalmente foi constituída pela união da Escola de Agronomia, Faculdade de Direito, Faculdade de Medicina e Faculdade de Farmácia e Odontologia.A UFC chega hoje com praticamente todas as áreas do conhecimento representadas em seus campi, onde reunem-se quatro centros (Ciências, Ciências Agrárias, Humanidades e Tecnologia) e cinco faculdades (Direito; Educação; Economia, Administração, Atuária e Contabilidade; Farmácia, Odontologia e Enfermagem; e Medicina).Sediada em Fortaleza, Capital do Estado, a UFC é um braço do sistema do Ensino Superior do Ceará e sua atuação tem por base todo o território cearense, de forma a atender às diferentes escalas de exigências da sociedade.

Geografia

Caatinga

Ocupando quase 10% do território nacional, com 736.833 km², a Caatinga abrange os estados do Ceará, Rio Grande do Norte, Paraíba, Pernambuco, Sergipe, Alagoas, Bahia, sul e leste do Piauí e norte de Minas Gerais. Região de clima semi-árido e solo raso e pedregoso, embora relativamente fértil, o bioma é rico em recursos genéticos dada a sua alta biodiversidade. O aspecto agressivo da vegetação contrasta com o colorido diversificado das flores emergentes no período das chuvas, cujo índice pluviométrico varia entre 300 e 800 milímetros anualmente.A Caatinga apresenta três estratos: arbóreo (8 a 12 metros), arbustivo (2 a 5 metros) e o herbáceo (abaixo de 2 metros). A vegetação adaptou-se ao clima seco para se proteger. As folhas, por exemplo, são finas ou inexistentes. Algumas plantas armazenam água, como os cactos, outras se caracterizam por terem raízes praticamente na superfície do solo para absorver o máximo da chuva. Algumas das espécies mais comuns da região são a amburana, aroeira, umbu, baraúna, maniçoba, macambira, mandacaru e juazeiro.



Minerais


MINAS GERAIS é um estado que é particularmente rico em minerais .tem quase o mesmo tamanho que a FRANÇA e seu relevo é formado em parte de montes,vales profundos e planaltos que atravessam a alta cadeia de montanhas da serra da Mantiqueira situada ao sul. Atualmente o estado se Minas Gerais produz mais diamante fosfato ,quartzo e estanho que qualquer outra parte do BRASIL.suas reservas de ferro embora grandes,são superadas pela região AMAZÔNICA, sobretudo por aquelas do projeto grande CARAJÁS no PARÁ, onde os depósitos de hematita são avaliadas em 35 bilhões de toneladas.
O quartzo é usado em vidros, relógio,detergentes, paste de dentes e iluminação elétrica. constitui mais de 12% da crosta terrestre e é um dos minerais de maior ocorrência do planeta.
No mundo da geologia nada dura para sempre a aparencia de Muitos minerais pode alterar-se radicalmente por terem sido removidos da terra.
Os minerais brasileiros prestam uma enorme contribuição à economia mundial.O BRASIL fornece cerca de 15% do minério de ferro consumido no mundo a qual ocorre na forma de hematita.parte dela é transformada em aço no próprio país, mais a maior quantidade e levada para fora para ser beneficiada pois o carvão brasileiro embora abundante, possui conteúdo muito elevado de cinzas.A maioria dos metais, produtos químicos e industriais hoje considerados essências a vida moderna são provenientes dos minerais

ROCHAS SEDIMENTADAS

As rochas sedimentadas são o produto de uma cadeia de processos que ocorrem na superfície do planeta e se inicia pelo intemperismo das rochas expostas à atmosfera.
As rochas intemperisadas perdem sua coesão e passam a ser erodidas e transportadas por diferentes agentes (água, gelo,vento,gravidade)até sua sedimentação em depressão da crosta terrestre, denominadas bacias sedimentares.A transformação dos sedimentos inconsolidadas(p.ex.areia) em rochas sedimentares (p.ex.arenito) é denominada diagênese, sendo causada por compactação e cristalização de materiais que cimentam os grãos dos sedimentos.
As rochas sedimentares fornecem importantes informações sobre as variações ambientais so longo do tempo geológico. Os fósseis, que são vestigios de seres vivos antigos preservados nestas rochas, são a chave para a compreensão da origem e evolução da vida.
A importancia economia das rochas sedimentares estar em suas reservas de petróleo, gás natural e carvão mineral, as principais fontes do mundo moderno.

sexta-feira, 16 de janeiro de 2009

Matemática

PITAGORAS


O Teorema de Pitágoras é provavelmente o mais célebre dos teoremas da matemática. Enunciado pela primeira vez por filósofos gregos chamados de pitagóricos, estabelece uma relação simples entre o comprimento dos lados de um triângulo retângulo:
O
quadrado da hipotenusa é igual à soma dos quadrados dos catetos.
Se c designar o comprimento da hipotenusa e a e b os comprimentos dos catetos, o teorema afirma que:

Durante séculos, os matemáticos questionaram: "Qual a demonstração feita por Pitágoras?". Hoje, parece não existir mais dúvidas de que Pitágoras teria seguido os seguintes passos:
Provável forma usada por Pitágoras para demonstrar o teorema que leva o nome.
Desenha-se um
quadrado de lado a + b;
Traçam-se dois
segmentos paralelos aos lados do quadrado;
Divide-se cada um destes dois
rectângulos em dois triângulos retos, traçando as diagonais. Chama-se C o comprimento de cada diagonal;
A área da região formada ao retirar os quatro triângulos retos é igual a a2 + b2;
Desenha-se agora o mesmo quadrado de lado a + b, mas colocamos os quatro triângulos retos noutra posição.
Assim, a área da região formada quando se retiram os quatro triângulos retos é igual a: c2
Foi assim que Pitágoras chegou à conclusão de que: a2 + b2 = c2, ou seja, num triângulo retângulo o quadrado da hipotenusa é igual á soma dos quadrados dos catetos. O segmento de medida c foi chamado de
hipotenusa e os de medida a e b foram chamados de catetos.
Outros
matemáticos, muito antes de Pitágoras, conheciam o teorema mas nenhum deles, até então, havia conseguido demonstrar que ele era válido para qualquer triângulo retângulo.
Talvez nenhuma outra
relação geométrica seja tão utilizada em matemática como o Teorema de Pitágoras. Ao longo dos séculos, foram sendo registrados muitos problemas curiosos, cuja a resolução tem como base este famoso teorema.

Aplicações do teorema
O teorema de Pitágoras pode ser aplicado em diversas figuras:

Quadrado

A diagonal do quadrado divide-o em dois triângulos retângulos congruentes. Sendo l o lado e d a diagonal, podemos definir que Triângulo equilátero
A altura do
triângulo equilátero divide-o em dois triângulos retângulos congruentes; sendo l o lado e h a altura, podemos definir que:
Generalizações
O teorema de Pitágoras permite calcular um lado de um triângulo rectângulo conhecendo os outros dois. O
teorema dos cossenos permite calculá-lo num triângulo qualquer.
O teorema de Pitágoras pode ser generalizado para um n-
simplex rectângulo: o quadrado do (n-1)-volume da hipotenusa é igual à soma dos quadrados dos (n-1)-volumes dos catetos. Em particular, num tetraedro rectângulo (isto é, que tem 3 faces perpendiculares entre si - os catetos), o quadrado da área da hipotenusa (a face que não é perpendicular às restantes) é igual à soma dos quadrados das áreas dos catetos.
Pitágoras dizia que"em todo triângulo retângulo, a soma das áreas dois quadrados dos catetos é igual à área dos quadrados da hipotenusa".

















Curva de Gauss

Também chamada de Curva normal, descreve a distribuição de eventos aliatorios. É uma curva simétrica em relação ao valor médio "m" escrita como:

Onde: "A" = valor maximo da funçao f(x)
"m"= valor médio da variável x
nesse experimento, idealizado pelo estatístico inglês Frances Galtan, a caminho das bolinhas que caem e são espalhadas pelos pregos é aliatório, logo a distribuição das bolinhas deve ser aproximadamente a distribuiçao de Gauss.


A disrtribuição normal e uma das mais importantes distribuições da estatística conhecida também
como Distribuição de Gauss ou Gaussiana. Foi desenvolvida pelo matemático francês Abraham de Moivre.
Além de descrever uma série de fenomenos físicos e financeiros,possui grande uso na estatística inferencial.É inteiramente descrita por seus parametros de média
e desvio padrão,ou seja,conhecendo-se estes consegue-se determinar qualquer probabilidade em uma normal.
Um interessante uso da Distribuição Normal é que ela serve de aproximação para o cálculo de outras distribuições quando o número de observações fica grande. Essa importante propriedade provem do Teorema de Gauss Central
do Limite que diz que toda soma de variáveis aleatórias aleatórias independente de média finita e variâncias limitada e aproximadamente Normal, desde que o número de termos da soma seja suficientemente grande.